116 research outputs found

    A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics

    Full text link
    An experimental setting for the polarimetric study of optically induced dynamical behavior in nematic liquid crystal films has allowed to identify most notably some behavior which was recognized as gluing bifurcations leading to chaos. This analysis of the data used a comparison with a model for the transition to chaos via gluing bifurcations in optically excited nematic liquid crystals previously proposed by G. Demeter and L. Kramer. The model of these last authors, proposed about twenty years before, does not have the central symmetry which one would expect for minimal dimensional models for chaos in nematics in view of the time series. What we show here is that the simplest truncated normal forms for gluing, with the appropriate symmetry and minimal dimension, do exhibit time signals that are embarrassingly similar to the ones found using the above mentioned experimental settings. The gluing bifurcation scenario itself is only visible in limited parameter ranges and substantial aspect of the chaos that can be observed is due to other factors. First, out of the immediate neighborhood of the homoclinic curve, nonlinearity can produce expansion leading to chaos when combined with the recurrence induced by the homoclinic behavior. Also, pairs of symmetric homoclinic orbits create extreme sensitivity to noise, so that when the noiseless approach contains a rich behavior, minute noise can transform the complex damping into sustained chaos. Leonid Shil'nikov taught us that combining global considerations and local spectral analysis near critical points is crucial to understand the phenomenology associated to homoclinic bifurcations. Here this helps us construct a phenomenological approach to modeling experiments in nonlinear dissipative contexts.Comment: 25 pages, 9 figure

    Infinite cascades of braids and smooth dynamical systems

    Get PDF

    Period Doubling Renormalization for Area-Preserving Maps and Mild Computer Assistance in Contraction Mapping Principle

    Full text link
    It has been observed that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of {\fR}^2. A renormalization approach has been used in a "hard" computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmann et al (1984). As it is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period doubling universality exists to date. In this paper we attempt to reduce computer assistance in the argument, and present a mild computer aided proof of the analyticity and compactness of the renormalization operator in a neighborhood of a renormalization fixed point: that is a proof that does not use generalizations of interval arithmetics to functional spaces - but rather relies on interval arithmetics on real numbers only to estimate otherwise explicit expressions. The proof relies on several instance of the Contraction Mapping Principle, which is, again, verified via mild computer assistance

    Convex Dynamics and Applications

    Full text link
    This paper proves a theorem about bounding orbits of a time dependent dynamical system. The maps that are involved are examples in convex dynamics, by which we mean the dynamics of piecewise isometries where the pieces are convex. The theorem came to the attention of the authors in connection with the problem of digital halftoning. \textit{Digital halftoning} is a family of printing technologies for getting full color images from only a few different colors deposited at dots all of the same size. The simplest version consist in obtaining grey scale images from only black and white dots. A corollary of the theorem is that for \textit{error diffusion}, one of the methods of digital halftoning, averages of colors of the printed dots converge to averages of the colors taken from the same dots of the actual images. Digital printing is a special case of a much wider class of scheduling problems to which the theorem applies. Convex dynamics has roots in classical areas of mathematics such as symbolic dynamics, Diophantine approximation, and the theory of uniform distributions.Comment: LaTex with 9 PostScript figure

    Stably non-synchronizable maps of the plane

    Full text link
    Pecora and Carroll presented a notion of synchronization where an (n-1)-dimensional nonautonomous system is constructed from a given nn-dimensional dynamical system by imposing the evolution of one coordinate. They noticed that the resulting dynamics may be contracting even if the original dynamics are not. It is easy to construct flows or maps such that no coordinate has synchronizing properties, but this cannot be done in an open set of linear maps or flows in Rn\R^n, n≥2n\geq 2. In this paper we give examples of real analytic homeomorphisms of R2\R^2 such that the non-synchronizability is stable in the sense that in a full C0C^0 neighborhood of the given map, no homeomorphism is synchronizable

    A numerical study of infinitely renormalizable area-preserving maps

    Full text link
    It has been shown in (Gaidashev et al, 2010) and (Gaidashev et al, 2011) that infinitely renormalizable area-preserving maps admit invariant Cantor sets with a maximal Lyapunov exponent equal to zero. Furthermore, the dynamics on these Cantor sets for any two infinitely renormalizable maps is conjugated by a transformation that extends to a differentiable function whose derivative is Holder continuous of exponent alpha>0. In this paper we investigate numerically the specific value of alpha. We also present numerical evidence that the normalized derivative cocycle with the base dynamics in the Cantor set is ergodic. Finally, we compute renormalization eigenvalues to a high accuracy to support a conjecture that the renormalization spectrum is real

    No extension of quantum theory can have improved predictive power

    Get PDF
    According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory which removes this indeterminism, as suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed. Added discussion on Bell's notion of locality. FAQ answered at http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm

    The boundary of chaos for interval mappings

    Get PDF
    A goal in the study of dynamics on the interval is to understand the transition to positive topological entropy. There is a conjecture from the 1980s that the only route to positive topological entropy is through a cascade of period doubling bifurcations. We prove this conjecture in natural families of smooth interval maps, and use it to study the structure of the boundary of mappings with positive entropy. In particular, we show that in families of mappings with a fixed number of critical points the boundary is locally connected, and for analytic mappings that it is a cellular set
    • …
    corecore